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Diabetes mellitus is a common disease worldwide. Diabetic patients with un-controlled
hyperglycemia undergo diabetic complications including heart disease, kidney disease,
retinopathy and neuropathy which are irreversible. High blood glucose concentration is the
pivot cause of generalized pathophysiological changes. Autoxidation of glucose produces
many free radicals which can directly damage the cells. Chronic diabetic patients with the renal
complication always develop nephropathy and reach the end stage of renal disease.
Accumulation of extracellular matrix materials such as collagen, fibronectin efc. which are induced
by transforming growth factor- B1 (TGF-P1), causes the renal sclerosis. TGF-B1 is a key factor
in the development of diabetic nephropathy. It stimulates the mesangial cells and endothelial
cells of glomerlar capillaries to produce collagen and other extracellular matrix materials. High
concentrated glucose milieu induces an overproduction of TGF—ﬂ1 from mesangial cells in the
glomeruli. The increase in the matrix materials results in renal vascular and tissue damage and
loss of the renal functions. In addition, TGF-f31 could stimulate the mesangial cells to produce
glucose transporter 1 (GLUT 1). The overproduction of GLUT 1 enhances the transportation of
glucose into the masangial cells resulting in the recurrence of those processes. Advanced
glycated end-products (AGEs) are synthesized from the reaction between glucose and protein
or lipid resulting in cell and tissue damages. Not only that AGEs are increased, but reactive
oxygen species (ROS) is also generated during the synthesis of AGEs. In addition, diacylglycerol
(DAG) is synthesized during the glucose meatabolism. The increase in DAG, AGEs and ROS
will activate protein kinase C (PKC) which is involved in the synthesis of many kinds of growth

factors including TGF—ﬂ1 leading to nephropathy and other micovascular complications in
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diabetes mellitus. Sorbifol is also produced in polyol pathway in glucose metabolism. In
diabetes, the accumulation of sorbitol in the eyes and kidneys causes changes in osmotic
gradient that damage cells and tissues. The mechanisms of diabetic nephropathy development
occur at the early stage of diabetes mellitus. Therefore, prevention and control of hyperglycemia
are the prior essential treatment at the early diagnosis to inhibit key causal factors of diabetic
nephropathy development. Early detection of excessive glucose in the body may be useful for
those who tend to develop diabetes mellitus. The determination of glycosylated hemoglobin

(HbA1 5) level is a tool for early detection of excessive blood glucose.

Keywords: Diabetic nephropathy, Involving factors.

Reprint request: Yusuksawad M. Department of Physiology, Faculty of Medicine,
Chulalongkorn University, Bangkok 10330, Thailand.
Received for publication : July 5, 2007.

Objectives: 1. To study causal factors of diabetic nephropathy development.

2. To understand the mechanisms of the development of diabetic nephropathy.
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Diabetes mellitus is a common disease
worldwide. The prevalence of diabetes in the adult
population is estimated at 5.1 % in 2003, and tends
to increase to 6.3 % by 2025. Recently, the Southeast
Asian region has 13.3 % high prevalence of diabetes
and impaired glucose tolerance; and it is expected
to be the highest in the world by 2025. @ In Thailand,
the estimated national prevalence of diabetes
in Thai adults has been reported as 9.6 %
(2.4 million people). ® The most common diabetic
complication is nephropathy. The prevalence of
diabetic nephropathy in Thailand was about 43.8 %
of all diabetic complications. ©

Diabetic nephropathy is a renal complication
that attacks a number of diabetic patients with
uncontrolted hyperglycemia.Since it causes
irreversible kidney failure leading to end-stage renal
disease, it is a serious problem of diabetic patients.
The approach to the causal factors and the mechanism
of diabetic nephropathy development is helpful
for those who are involved in the prevention
and treatment of diabetic complications. High
blood glucose concentration is the crucial cause
of renal pathophysiological changes in diabetic
patients. It induces oxidative stress and biochemistry
disturbances that generate many causal factors of
diabetic nephropathy including ROS, advanced
glycated end-product (AGEs), diacyl glycerol (DAG),
PKC, TGF—ﬁ‘I, polyol pathway (impair the ratio of
NADH to NAD and accumulation of sorbitol in the renal
glomeruli). Glucose transporter 1 (GLUT 1) is a factor
which attributes to the development of diabetic
nephropathy. This article review brings up some key
causal factors of diabetic nephropathy development.

However, other factors inciuding angitensin I,
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molecular factors-induced growth factor synthesis,
molecular binding are not stated in the comments.
In the beginning, this article reviews the roles
of hyperglycemia, hypertension and proteinuria
related to molecular mediators of the nephropathy
development. The latter is focused on some
biochemical factors and mechanisms involving in the

development of diabetic nephropathy.

1. Hyperglycemia

Diabetes melitus with poor blood glucose
control contributes to the development of albuminuria.
It has been elucidated that hyperglycemia is involved
in morphological and functional abnormalities in
diabetic kidney disease. Also, in extracellular ambient,
glucose reacts non-enzymatically with primary
amines of proteins, forming glycated compounds.
When glucoée is transported into cells by glucose
transporters, it is partly metabolized to sorbitol
via polyol pathway and then to hexosamines. Ali
these biochemical pathways have been implicated
in hyperglycaemia-induced kidney damage.
Furthermore, excess glucose can directly exert toxic
effects by activating intracellular signaling pathways
and inducing a number of cytokines that injure the
kidney.

1.1 Glucotoxicity

High glucose milieu has been confirmed that
it directly alters the extracellular matrix deposition in
the kidney. Some studies on the mesangial celis as
well as tubular epithelial cells demonstrated that high
glucose concentrations induce cellular hypertrophy
and increase extracellular matrix components such
as collagen, laminin and fibronectin. ¥ A further

mechanism, whereby high glucose concentrations lead
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to matrix deposition, is the reduction of the activity of
metalloproteinases, the enzymes responsible for the
extracellular matrix degradation. *® In the mesangial
cells, high glucose levels induce transcription and
secretion of TGF-1. ™%

Kidney celis do not have an absolute
requirement of insulin for glucose uptake. Therefore,
the intracellular glucose level more directly reflects
its plasma concentration. The importance of excess
glucose entry into the mesangial cells is an increase
in extracellular matrix production and over-expressed
cellular glucose transporter GLUT-1. ® The increase
in GLUT-1 expression leads to the increase of basal
glucose uptake, with consequential increase in aldose
reductase expression and PKC activation. This results
in the increase in extracellular matrix production. '?
When antisense GLUT-1 is used to protect the
mesangial cells from glucose-induced GLUT-1 over-
expression, high glucose concentrations fail to induce
extracellular matrix proteins. """ This finding indicates
that the factors regulating glucose transporter
expression or activity could influence glucose uptake
and glucotoxicity. Glucose itself as well as TGF-1
could up-regulate GLUT-1 expression in mesangial
cell culture. © ™

Glucose is metabolized to fructose-6-
phosphate in glycolysis. Fructose-6-phosphate is
converted to glucosamine-6-phosphate by a rate-
limiting enzyme of glucosamine-fructose-6-phosphate
amidotransferase in the hexosamine pathway. This
leads to the formation of N-acetylglucosamine which
is a component of membrane glycoproteins. Thus,
the activation of the hexosamine pathway is implicated

in the development of chronic diabetic complication

associated with PKC activation and TGF-B1 over-

Chula Med J

expression. ¥

1.2 Non-enzymatic glycation

Chronic hyperglycaemia leads to non-
enzymatic protein glycation. The glycation results from
exposure of lysine amino-terminal groups of proteins
to high glucose concentrations. The increase in the
covalent binding of glucose into proteins results in
the formation of Schiff base which subsequently forms
stable ketoamines, the Amadori products. When these
glycated proteins undergo other reactions, such as
dehydration, cyclization, oxidation and rearrangement,
they form advanced glycation end-products (AGEs).
The reaction is not reversible, and AGEs gradually
accumulate in the tissues. ™

The accumulation of AGEs in the kidney is
parallel to the development of albuminuria, mesangial
expansion and thickening of glomerular basement
membrane in diabetes mellitus. The molecular cross-
linking is also found in blood vessels that causes
diabetic vascular complications. ® AGEs have
various AGE-specific receptors. AGE-binding proteins
or receptors for advanced glycosylation end-products
(RAGE such as AGE-R1, AGE-R2, AGE-R3), lysozyme
and macrophage scavenger receptors transduce the
action of AGEs. AGE-specific receptors are present
in many cell types, including the mesangial cells,
glomerular epithelial cells and tubular epithelial
cells."” Interaction of AGE-modified proteins with
AGE receptors results in the degradation of AGE
proteins, and simultaneously induces the synthesis
and release of cytokines, such as TGF-B1, platelet-
derived growth factor (PDGF) and insulin-like
growth factor (IGF). Consequently, they result in the
enhancement of collagen, laminin and fibronectin

production. "®
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1.3 The polyol pathway

Hyperglycemic condition increases the
production of ROS which is implicated in sorbitol
accumulation. Glucose is reduced to sorbitol by the
enzyme aldose reductase in the polyol pathway.
Excessive flux of glucose in the polyol pathway results
in the increase in the ratio of reduced nicotinamide
adenine dinucleotide (NADH) to oxidized nicotinamide
adenine dinucleotide (NAD). This results in metabolic
imbalances, mimicking the effects of the same
redox change induced by hypoxia. " In chronic
diabetes, sorbitol accumulates in various tissues
including the renal glomeruli and tubules. The
accumulation of sorbitol disturbs the cellular
osmoregulation by depletion of myoinositol ®” and
by changing in the cellular redox potential ®”, resulting
in permanent tissue damage in chronic diabetes
mellitus. The polyol pathway is, therefore, involved
in the pathogenesis of diabetic nephropathy #?
and associated with GLUT 1, "2 PKC activation and
TGF-B1 production. ® Vascular endothelial cells are
also affected by sorbitol accumulation causing

vascular complication in diabetes mellitus. ®¥

2. Hypertension

Hypertension plays a critical role in the
progression of diabetic nephropathy. The development
of proteinuria mostly takes place parallel to the gradual
rise in the systemic blood pressure. The increase in
blood pressure is closely related to the speed of the
decline in glomerular filtration rate. ®® Therefore,
diabetic patients with normal albumin excretion who
have higher arterial biood pressure eventually progress

(26,27

to microalbuminuria. ' The elevated arterial blood

pressure causes glomerular lesions. Antihypertensive
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therapy can prevent the occurrences of the proteinuria

and the renal changes in diabetes mellitus. ®*

3. Proteinuria
Proteinuria is a key feature of renal disease
and a strong predictor of the progression toward

®9 Proteinuria not only reflects

end-stage renal failure.
renal impairment and a key pathogenic element of
disease progression but also the advancement of
generalized vascular damage. An excessive protein
overload can induce tubulo-interstitial damage and
contributes to the disease progression. GV Excessive
tubular reabsorption of proteins and the consequent
accumulation of proteins in tubular epithelial cells
induce the release of vasoactive and inflammatory
mediators, such as, TGF-31 endothelin 1, osteopontin
and macrophage chemotactic protein-1. These factors
in turn lead to infiltration of mononuclear cells, causing
injury to the tubulo-interstitium, and ultimately the
renal damage. The changes in renal hemodynamics,
either primary or reactionary to nephron loss, induce
further proteinuria that contributes progressive renal

impairment. >

Microvascular complications in diabetes mellitus
Nitric oxide (NO) is a potent vasodilator
molecule which is produced by the endothelial
cells. Nitric oxide synthase (eNOS) catalyzes the
reaction of L-arginine that changes to NO. NO
inhibits the migration ®¥ and proliferation of vascular
smooth muscle cells. ®® Furthermore, platelet
aggregation ® and adhesive molecule expression
of leukocyte ®*¥ are inhibited by NO. The injured
vascular smooth muscle cells, endothelial cells, and

the activated vascular wall mast cells, fibroblasts, .
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macrophages, and leukocytes, as well as the oxidation
of norepinephrine (NE) from the renal sympathetic
nerves produce abundance of ROS. ROS then
interacts with NO to form the potent cytotoxic
(OONO). Peroxynitrite radicals interact with proteins
in the kidney leading to the glomerular and tubular

dysfunction (Figure 1).

Chula Med J

The causal factors of coronary artery disease
and progressive renal insufficiency adversely affect
endothelial cell function and vascular smooth muscle
cell function. They induce the formation of reactive
oxygen species such as superoxide anion and
hydrogen peroxide. These ROS resultin the decreases

in the vasodilators and the growth inhibitors such as

L-arginine —————» L-citrulline + NO + O, + OONO

Afferent arteriole

Figure 1. ROS reduces the biological effects of NO and induces the renal vascular complications.

Available from: http:/iwww.hypertensiononline.org [2005,March 20]
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prostacyclin and nitric oxide but the increases in the
formation of the endothelium-derived vasoconstrictors
and growth promoters such as angiotensin I,
endothelin-1, and plasminogen activator inhibitor
(PAI-1). These changes lead to vascular complications,
especially the consequential pathophysiology of the
kidneys (Figure 2).

The progressive injury of the coronary and
the kidney are involved in the increase in apoptosis
or programmed cell death which contributes to
the remodeling of vascular wall and the activation
of cell adhesion molecules. The adherence of both
mononuclear and polymorphonuclear leukocytes
to the vascular wall results in the infiltration and the
deposition of oxidized lipids in the vessel wall. This
consequently causes vasoconstriction, hypertrophy
and hyperplasia of the vascular smooth muscle cells

and thrombus formation.
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Microvascular damage is a common under-
lying change of diabetic complications including
diabetic peripheral neuropathy, retinopathy and
nephropathy. Chronic diabetics with microvascular
complications and poor treatments often undergo lower
extremity amputation, blindness, and end-stage renal
disease. All of these are irreversible. The studies in
diabetic animals have demonstrated that an
over-activation of PKC results in the microvascular
damage. ®® Protein kinase Cy (PKC, ) is an enzyme
that acts as a signal transducer that involves in
many biochemical processes. ®**? There are at
least 12 isoforms of PKC that are located in various
tissues throughout the body. Two of the isoforms,
specifically B1 and [52, are located within the nerves,
eyes, and kidneys and have been hypothesized
to play major roles in both the development and

progression of microvascular complications in

Diabetes mellitus
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The relationship of the factors involving in the microvascular damage in diabetes mellitus.
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diabetic patients. ®® Hyperglycemia activates at
least four metabolic pathways that contribute to
diabetes-induced microvascular damage. In the
normal physiological glucose concentrations, the
activation of PKC occurs via cell signal transductions.
It is associated with a complex sequence of
biochemical interactions through G-protein coupled
receptor-mediated pathway. “**® DAG is an inter-
mediate substance of glucose metabolism which
is an important mediator to signal the activation
of PKC. “® The activation of PKC accounts for the
renal pathophysiological changes including an
initial increase in the glomerular filtration rate,
mesangial matrix expansion, glomerular capillary
crowding, and glomerular occlusion. “”*® Other
pathways, including glycation, polyol pathway and
superoxide overproduction also play a role in diabetic
microvascular complications. The relationship of these
factors involving in microvascular damage that leads
to the diabetic complications is shown in the following

diagram.

Relationship of hyperglycemia, oxidative stress,
TGF-B1, PKC and GLUT 1 in the development of
diabetic nephropathy

Diabetic nephropathy is one of microvascular
complications in diabetes mellitus which finally leads
to end-stage renal failure. Its pathological features
are thickening of the glomerular and tubular basement
membrane. ®® Glomerulosclerosis is a conspicuous
morphological change in diabetes mellitus. ®” Studies
in streptozotocin-induced diabetic rats found the
glycemic control is an important way in the prevention
of the development of glomerulosclerosis. Poorly-

controlled diabetic rats with constantly high plasma

Chula Med J

glucose level showed significant increase in basement
membrane-like materials and mesangial cell mass in

comparison with well-controlled diabetic rats. ***¥

Hyperglycemia generates diabetic nephropathy-inducing
oxidative stress

Under physiological conditions, glucose
normally undergoes oxidation, the process
through which protein-reactive ketoaldehyde,
hydrogenperoxide and highly reactive oxidants are
produced. " In diabetes mellitus, the generation of
reactive oxygen species is abundant. Hyperglycemia
does not only generate more reactive oxygen species
but also impairs antioxidant mechanisms leading to
nephropathy in diabetes mellitus. ®**" Several in vitro
studies have confirmed that highly concentrated
glucose directly induces the increase in oxidative
stress in glomerular mesangial cells. ®*® A study in
kidney-cortex tubules of diabetic rabbits indicated an
increase in intracellular hydroxyl free radical generation
and change in intracellular glutathione status. The
intracellular glutathione redox state was diminished
(GSH/GSSG) in spite of the elevation of glutathione
reductase activity. ®” The activities of xanthine
oxidase and catalase in the diabetic rat kidney were
decreased. Insulin treatment could restore antioxidant
enzyme activities. ® In addition, other antioxidant
enzymes including catalase, superoxide dismutase
and glutathione peroxidase also decreased in diabetes
mellitus. Advanced oxidative stress in uncontrolled
diabetes manifested marked alterations in tissue
antioxidant status. ®**” In addition, hyperlipidemia,
which results from the chronic hyperglycemia, can
induce the nephropathy via the generation of reactive

oxygen species. ©" %%
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The attachment of these reactive oxygen
species to proteins contributes to protein fragmentation

(14.89-79 1n vitro

and cross-linking in diabetic tissues.
and in vivo studies indicated that lipid peroxidation
also enhanced both diabetic animals and humans
causing renal damages. ®* ®" " Furthermore, an
elevation of free radicals can induce apoptosis, which
also contributes to the development of diabetic
nephropathy. ® "™ In addition, oxidative stress
increases the production of TGF-B1 via the PKC

activation. & ™

Hyperglycemia stimulates TGF-B1 overproduction via
PKC activation

Transforming growth factor-beta 1 (TGF—B1)
is found an important mediator in the development of
diabetic renal disease. ” It stimulates the production
and accumulation of glomerular matrix materials. ™
™ The urinary levels of TGF-B1 increase in diabetic
patients. "® The neutralization of TGF-1 by anti-
TGF-B1 antibody has been shown to attenuate
renal hypertrophy and thus enhance extracellular
matrix gene expression in STZ-induced diabetic
mice. ® In addition, a long-term administration of
neutralizing anti-TGF-B1 antibody could prevent
glomerulosclerosis and renal insufficiency in diabetic
db/db mice, a genetic model of non-insulin dependent
diabetes mellitus. "7 The stimulation of TGF-B1
expression with high glucose concentration milieu
has been demonstrated in the culture of glomerular
mesangial cells and proximal tubular cells. ” The high
glucose concentration ambient and mechanical
stretch could stimulate the production TGF-1 via a
PKC-dependent mechanism. ™ ® An in vitro study

demonstrated that highly concentrated glucose
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ambient could induce TGF-§1 over-expression and
increase extracellular matrix protein in the renal
glomeruli. “* %" The highly concentrated glucose
induces TGF- B1 gene expression via two adjacent
activating protein-1 (AP-1) binding sites. ®® It
enhances the binding activity of the nuclear
proteins to the AP-1 binding sites which resuits in
the increase of activity of TGF-B1 promoter. Protein
kinase C (PKC) and p38 mitogen-activated protein
kinase (p38 MAPK), which regulate the TGF-B1
promoter activity, are also activated by the highly

concentrated glucose. ® The events result in the over-

expression of TGF-f1-mRNA and protein.

TGF-B1 induces overproduction of extracellular matrix
materials via PKC activation

Under concentrated glucose conditions, the
increased in de novo synthesis of DAG from glucose
has been demonstrated in the glomerular mesangial
cells cultured and in the glomeruli of diabetic rats.
The increased DAG activates PKC resulting in
the activation of the various intracellular signal
transduction systems. ™ It has been shown that
TGF-B1 over-expression stimulates PKC translocation
and activation which accounts for the increase in
the extracellular matrix materials. ®*® The inhibition
of PKC effectively blocks highly concentrated
glucose-induced fibronectin production. ™ A long-
term administration of a PKCB inhibitor inhibits the
glomerular PKC activation, reduces urinary albumin
excretion rates and prevents the mesangial expansion
in diabetic db/db mice. ® Inhibition of PKC, could
decrease the basal and TGF-J1-stimulated collagen |

production in human mesangial cells. ®
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Highly concentrated glucose milieu induces GLUT 1
over-expression.

GLUT 1, which is a major glucose transporter
of the mesangial cells, plays an important role
as a glucose transporter in the pathogenesis of
glomerulosclerosis. It is up-regulated in diabetic
kidneys. ®% An over-expression of GLUT1 could
increase aldose reductase, a protein kinase C_ and
the native GLUT1 transcription in both normal glucose
and highly concentrated glucose condition in the
mesangial cells. ® A study in a mesangial cell culture
demonstrated that high concentrated glucose milieu
(20 mM) facilitated the GLUT 1 expression in the rat
me_sangial cells and the uptake of glucose analog
*H 2-deoxyglucose (*H 2-DOG) when compared
with mesangial cells in the physiological glucose
concentration milieu (8 mM). The transport of glucose
into the cells has been shown to be a rate-limiting for
extraceliular matrix production in the mesangial
cells. ™ A study in STZ-induced diabetic rats
demonstrated that 45 days of diabetes resulted in an
increase in albuminuria, urinary TGF-B1 and GLUT1
protein. ® The treatment of TGF- b can regulate GLUT1
mRNA and protein levels and significant increase in
glucose uptake in rat mesangial cells. ©” The cultured
mesangial cells transducted with the human GLUT 1
gene and thus over-expressed the GLUT1 protein
showed a marked increase in glucose uptake and
synthesis of extracellular matrix molecules. The
simultaneous presence of long-term high glucose
concentration and TGF- 1 over-expression could
enhance GLUT 1 up-regulation in the mesangial
cells. ® ™ With those evidences, hyperglycemia can
induce the development of diabetic nephropathy via

GLUT1 over-expression. The abundance of GLUT 1

Chula Med J

results in the enhancement of glucose uptake and
turns to stimulate TGF-B1 production in mesangial
cells. Both proteins of TGF-B and GLUT 1 can influent
the expression of one another.

This diabetic complication occurs in the first
few years after diagnosis and could be detected
early. Hyperglycemia is the most common cause of
diabetic compilications. Therefore, good control of
blood glucose concentration is the first and pivot
treatment in the prevention of diabetic complications
such as nephropathy and other microvascular
complications. In addition, a good management of
hyperglycemia may delay the progression to the end
stage renal disease. Early detection of excessive
glucose in the body may be useful for those who tend
to develop diabetes mellitus. The determination of
glycosylated hemoglobin (HbMC) level is a tool for early

detection of excessive blood glucose.
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